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Abstract. Inflation symmetry is one of the peculiar features of the diffraction pattern of a
quasicrystal. However, it is not an exclusive property of quasicrystalline structures and it may
be present in incommensurately modulated structures, as shown recently in the Al–Mg system
(Donnadieu Pet al 1996 J. PhysiqueI 6 1153–64). The conditions that a single modulation
parameter of an incommensurate structure must fulfil in order to have inflation symmetry are
determined. Although the number of possible distinct inflation-symmetric quasilattices is infinite,
from physical/experimental arguments it can be concluded that, in practice, only a few of them
can be experimentally observed, the reported phase of the Al–Mg system being one of these
particular cases. A quantitative criterion to classify the modulation parameters that give rise to
quasilattices with observable inflation symmetry is proposed. The generalization of the analysis
of incommensurate structures with more than one single modulation parameter is also discussed.
Finally, the inflation parameters of diffraction patterns with rotational point groups of finite order,
CN , are compared with the parameters of the one-dimensional case.

1. Introduction

It is very well known that the reciprocal quasilattice of a quasicrystal possess scaling or
inflation symmetry (IS). This means that if all the vectors of the quasilattice are multiplied by
a constant factor greater than one, the so-calledinflation parameter, the quasilattice remains
unchanged. On the other hand, the IS of incommensurate modulated structures (IMS) has
scarcely been investigated due to the lack of experimental evidence of this property in their
diffraction patterns. Janner, Ascher and Janssen [1–5] studied the presence of IS in IMS with
one modulation parameter and determined the form of all the possible inflation parameters
using group theory. They found that the number of quasilattices with IS is infinite. The
presence of IS in more exotic systems such as snow flakes has also been studied by Janner [6].

Recently, a new metastable phase in the Al–Mg system with very odd properties [7] has
been reported. At 61 at% Al the diffraction pattern of rapidly solidified samples exhibits cubic
rotational symmetry and IS at the same time. As the IS has been considered to be a characteristic
of quasicrystalline structures, the new metastable phase was called ‘cubic quasicrystal’. In
a previous work [8], we showed that this phase can be interpreted as anordinary IMS, and
the six-dimensional superspace group which describes the structure was determined. The
observed IS can be attributed to the specific value of the modulation parameterq, which within
experimental resolution equals 2−√3, while the inflation factor of the reciprocal quasilattice
is α = 2 +

√
3.
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In the present work we study the possible inflation parameters of an IMS with a single
modulation. We also derive the possible modulation parameters which give rise to different
quasilattices with IS. The use of physical/experimental arguments allow us to ‘predict’ the
quasilattices with IS that are most likely to be experimentally observed. The way to generalize
to IMS with more than one modulation parameter is also pointed out. Finally, we show in a
simple way that the inflation parameters in rotational point groups of finite order, CN , are a
subset of the parameters obtained in one dimension.

2. Inflation symmetry in incommensurate modulated structures

A non-weighted quasilattice, i.e. a quasilattice with no consideration of the associated
diffraction intensities, will have IS if after the multiplication of all the vectors by a constant
factor, the following two conditions are satisfied:

Condition 1. All the vectors in the new quasilattice (the ‘inflated one’) are in the first
quasilattice.

Condition 2. Every vector in the original quasilattice belongs to the inflated quasilattice.

Periodic lattices fulfil the first condition, the constant factor being an integer, but do not
fulfil the second condition, thus, they do not possess that symmetry. In this section we analyse
the conditions that the modulation parameters of an IMS must fulfil in order to have IS when
the modulation vectors are parallel to rational directions of the sublattice of main reflections
of the diffraction pattern.

2.1. One-dimensional quasilattices with one single modulation parameter

Letk be the basis vector which indexes all the main reflections in a one-dimensional quasilattice
of an IMS andq = qk is the modulation vector necessary to index the satellites. We can choose
k andq as scalars with|k| = 1, and any reflection may be expressed as:

H = n +mq with n,m ∈ Z. (1)

If this line of Bragg points has IS, there is an inflation parameterα so thatH ′ = αH

belongs to the quasilattice (1) for everyH . Taking particular values forn andm (n = 1,
m = 0 andn = 0,m = 1) it is straightforward to demonstrate thatα andq2 must be rational
linear combinations of l andq, so that the modulation parameterq and the inflation parameterα
satisfy a second degree equation with rational coefficients. Therefore, the most general forms
of the modulation parameter and the inflation factor are:

q = ql ±√q2 andα = q3± q4
√
q2 (2)

whereq1, q2, q3 andq4 are rational numbers, andq2 does not have an integer square root.
Therefore, bothq andα are quadratic integer numbers. For a general reflection (1), condition
1 implies that

H ′ = αH = α(n +mq) = n′ +m′q n,m, n′, m′ ∈ Z. (3)

As equation (3) must be fulfilled for anyn andm, from (2) it can be shown that the
following relations must be satisfied,

q3− q1q4 = n1 q4(q2 − q2
1) = n3

q4 = n2 q3 + q1q4 = n4 (4)
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and relation (3) can be set in matrix form,(
n′

m′

)
=
(
n1 n3

n2 n4

)
×
(
n

m

)
. (5)

On the other hand, condition 2 implies that the inverse of the 2×2 matrix of equation (5) must
be an integer, so, the determinant of the matrix is±1,

n1n4 − n2n3 = ±1 (6)

and it belongs to the group of integer 2×2 matrices with determinant±1,GL(2, Z). Therefore,
the modulation parameterq and the inflation parameterα may be expressed as:

q = n4 − n1±
√

4n2n3 + (n4 − n1)2

2n2
(7)

α = n1 + n4 ±
√

4n2n3 + (n4 − n1)2

2
(8)

where the four integers are related by equation (6) and the square root is not an integer.
Equations (7) and (8) constitute the general forms for the modulation and inflation parameters
in our special case. Using equation (6) the inflation factor becomes:

α = N ±√N2 ± 4

2
with N = n1 + n4. (9)

This last result has already been obtained by Janner and Ascher [1, 2]. Theα parameter
satisfies the relation,

α2 = ±1 + (n1 + n4)α (10)

depending on the two possibilities in equation (6). Therefore,α is a quadratic unit number
(positive or negative). All the possibilities of equations (7) and (8) are solutions of the±Pell
equation. The two possibilities for the sign in equation (8) correspond to a pair of conjugate
values which satisfyα+α− = 1. Therefore, one of these values is the inflation parameter of
the quasilattice and the other is the deflation parameter. The general expressions (7) and (8)
derived here contain additional information, as we will see below.

According to equation (9), the set of possible inflation parametersα is infinite, and
therefore the number of possible types of IS quasilattices is also infinite. However, for a
given value ofN = n1 + n4 (and therefore for a single inflation parameterα) there are also
different quasilattices that correspond to different possibilities for then1, andn4 integers,
keepingN constant (10). So, the value of the inflation factor restricts the possible values of
the modulation parameter, but it does not determine it.

Although any combination of four integers that satisfy equation (6) is possible, not all of
them are independent. For example, different combinations associated with the same inflation
factorα and different modulation parameters which differ by an integer are equivalent. They
correspond to different elections of the modulation vector to index the same quasilattice. The
same is true when the sum of the two modulation parameters is an integer. As a general rule,
to each combination of integers we will assign not theq value calculated directly from (7),
but the equivalent value in the range 0< q < 0.5. On the other hand, it may happen that
two sets of four integers generate equivalent modulation vectors (their sum or subtraction is
an integer), but different inflation factors. In this case, as the quasilattice is the same in both
cases, it can be proved that one of the inflation factors is an integer power of the other. This
reflects the trivial fact that for an inflation factorα of a quasilattice, for any integern positive
or negative,αn will also be an inflation parameter. Among all the equivalent choices, we will
take the value closest to and greater than one. Note that values of the inflation parameter in
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the range 0< α < 1 correspond, in fact, to ‘deflation’ parameters and negative values ofα

give rise to inflation/deflation plus inversion.
Finally, for any combination of integers we can always choose the positive sign of the

square root in equation (7), because there is another combination (n′1 = n4, n′2 = −n2,
n′3 = −n3, n′4 = n1) that changes only the sign of the square root, leaving the inflation
parameter unchanged.

Even if we take into account all these considerations, the number of combinations of
four integers which satisfy equation (6) and generate non-equivalent quasilattices with IS is
infinite, and the values of the possible modulation vectors producing IS densely fill the range
between 0 and 0.5. This means that, mathematically,anyvalue of the modulation vector of
an IMS is infinitely close to a modulation parameter described by equation (7) with a certain
set of four integers. Thus, there is always a quasilattice with IS that cannot be experimentally
distinguished from the quasilattice of the real structure. However, to our knowledge there is
only one experimentally observed IMS where IS has been claimed [7]. The reason is that, in
practice, the observation of IS features in a diffraction diagram is implicitly considered to be
the set of discrete Bragg peaks, and not the dense set of points of the corresponding quasilattice.
Note that for a general reflection,H = n+mq the set of four indices of the matrix in equation
(5) gives the indices of the reflectionH ′ = α(n +mq) related to the first set by IS. If the four
integers are large, the indices ofH ′ will be large compared ton andm, and experimentally
this satellite reflection will not be observable. Moreover, the inflation factor will also be large
and the related reflection will be far from the first value, making it difficult to visualize the IS.
These facts can be used to establish a hierarchy between quasilattices according to the degree
of practical observability of the IS: the quasilattices with low values of the integersni will be
the best candidates to be observed and a criterion of observability can be defined in terms of
the sum of their absolute values:

M =
4∑
i=1

|ni | (11)

and it can be concluded that the diffraction diagrams will apparently exhibit less IS visual
features the larger the value ofM associated with the modulation parameter.

Considering this criterion of observability, we have made a systematic search of all the
sets of four integers that satisfy equation (6) with the smallestM values, taking into account
the previous arguments about the equivalence of some of the sets. All the possibilities for
M < 11 are shown in table 1. Each row corresponds to a different quasilattice with IS. In
the first four columns, the four integers of the matrix (5) are indicated, the fifth is the sum of
their absolute values (11), the sixth column represents the modulation parameter given by the
four integers (7) and its equivalent value in the range 0< q < 0.5, and in the last column
the associated inflation parameter (8) is given. As we have mentioned before, some of these
quasilattices have the same value for the inflation parameter, but as the modulation vector of
one of them cannot be indexed by means of the basis vectors of the other quasilattice, the
quasilattices are different. In some of these cases one quasilattice is a subset of the other (for
example, the quasilattice of row 3 is a subset of the quasilattice of row 18), but in other cases
there is not such a relation (quasilattices of rows 13 and 15). As it has been stressed before,
these inequivalences are associated with the different possibilities for then1 andn4 integers,
which give rise to the same quadratic equation (10). According to the criterion explained
above, among all the possibilities, the first rows in table 1 are the main candidates to show
IS in practice, and in fact the Al–Mg structure with cubic point group symmetry and reported
IS corresponds to row 5 of table 1 [8]. Note also that the modulation parameter(3−√5)/2
with the third lowest value ofM is equivalent to the golden mean(1 +

√
5)/2 appearing in
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Table 1. Modulation parameters of an incommensurately modulated structure which give rise to
inflation symmetry in the reciprocal quasilattice. In the first four columns, the four integers of
matrix (5) are indicated. The fifth column corresponds to the value of (11) which serves as a
criterion to order the resulting quasilattices. The sixth column indicates the modulation parameter
given by (7) and the equivalent parameter in the range 0< q < 0.5 when they are different. The
last column gives the inflation factor associated with the quasilattice (equation (8)).

Equivalent parameter in
n1 n2 n3 n4

∑ |ni | Modulation parameter,q 0< q < 0.5 Inflation parameter,α

2 1 1 0 4
√

2− 1≈ 0.4142
√

2 + 1≈ 2.4142

3 1 1 0 5
√

13−3
2 ≈ 0.3028

√
13+3
2 ≈ 3.3028

2−1 1−1 5 3−√5
2 ≈ 0.3820

√
5+1
2 ≈ 1.6180

4 1 1 0 6
√

5− 2≈ 0.2361
√

5 + 2≈ 4.2361

4−1 1 0 6 2−√3≈ 0.2679
√

3 + 2≈ 3.7321

3−2 1−1 7 2−√2
2 ≈ 0.2929

√
2 + 1≈ 2.4142

3 2 1 1 7
√

3−1
2 ≈ 0.3660

√
3 + 2≈ 3.7321

5 1 1 0 7
√

29−5
2 ≈ 0.1926

√
29+5
2 ≈ 5.1926

5−1 1 0 7 5−√21
2 ≈ 0.2087

√
21+5
2 ≈ 4.7913

2 3 1 1 7
√

13−1
6 ≈ 0.4343

√
13+3
2 ≈ 3.3028

1 3 1 2 7
√

13+1
6 ≡ 5−√13

6 ≈ 0.2324
√

13+3
2 ≈ 3.3028

4 3 1 1 9
√

21−3
6 ≈ 0.2638

√
21+5
2 ≈ 4.7913

3 4 1 1 9
√

5−1
4 ≈ 0.3090

√
5 + 2≈ 4.2361

1 4 1 3 9
√

5+1
4 ≡ 3−√5

4 ≈ 0.1910
√

5 + 2≈ 4.2361

2 5 1 2 10
√

5
5 ≈ 0.4472

√
5 + 2≈ 4.2361

4 5 1 1 11
√

29−3
10 ≈ 0.2385

√
29+5
2 ≈ 5.1926

1 5 1 4 11
√

29+3
10 ≡ 7−√29

10 ≈ 0.1615
√

29+5
2 ≈ 5.1926

3−5 1−2 11 5−√5
10 ≈ 0.2764

√
5+1
2 ≈ 1.6180

3 5 1 2 11
√

21−1
10 ≈ 0.3583

√
21+5
2 ≈ 4.7913

2 5 1 3 11
√

21+1
10 ≡ 9−√21

10 ≈ 0.4417
√

21+5
2 ≈ 4.7913

5 4 1 1 11
√

2−1
2 ≈ 0.2071 2

√
2 + 3≈ 5.8284

5−3 2−1 11 3−√3
3 ≈ 0.4226

√
3 + 2≈ 3.7321

5 3 2 1 11
√

10−2
3 ≈ 0.3874

√
10 + 3≈ 6.1623

1 3 2 5 11
√

10+2
3 ≡ 4−√10

3 ≈ 0.2792
√

10 + 3≈ 6.1623

the usual definition of the Fibonacci chain and the length scales of decagonal and icosahedral
quasicrystals (see, for example, [3]).

The physical meaning of the IS is still an open question. Is the presence of IS a symmetry
feature of particular thermodynamic phases in the phase diagram or is the observation of IS
merely an accident due to the continuous variation in the phase diagram of the modulation
parameter? It is significant that the intensity of satellite reflections of the previously mentioned
cases of IMS with IS is very high and that they are present up to a high order, in comparison
with modulated structures with different modulation parameters in the same alloy [7]. In order
to elucidate this question, it would be very interesting to look for IMS with a modulation
parameter given in the first rows of table 1, check the region of stability of the system and
analyse the intensity and order of the satellite reflections. If there was a significant difference
in the intensities and number of observed satellite reflections with respect to similar IMS with
modulation parameters far from the values of table 1, then it would indicate that the IS resulting
from these particular values of the modulation parameter has some physical meaning and is
not merely a mathematical curiosity.
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2.2. One-dimensional quasilattices with more than one modulation parameter

When two modulation parameters are necessary to index a line of the diffraction pattern, say
q and r (both mutually incommensurate), the two conditions previously mentioned would
require that the inflation parameter and the three quantities,q2, r2 andqr, be rational linear
combinations of 1,q andr. It can be deduced thatq andr satisfy third degree equations with
rational coefficients, i.e. they are cubic integer numbers. The matrices relating the indices of
a reflection and its (inflation) symmetry-related one belong to the group of integer matrices
3×3 with determinant±1,GL(3, Z). When more than two modulation vectors are necessary,
the equations which would satisfy the modulation parameters would be of a larger degree, i.e.
they are integer numbers of higher order and the matrix would be of a higher dimension, its
determinant always being±1. In this case, there would be more than one single inflation pa-
rameter which cannot be expressed as integer powers of one of them. Although mathematically
possible, it would be rather difficult to observe a diffraction pattern with this property.

2.3. Inflation symmetry in three-dimensional incommensurate modulated structures

In physical three-dimensional systems, the IS can be present in one, two or three dimensions.
For example, the diffraction pattern of a structure, in which the atoms are arranged periodically
in two dimensions and following a Fibonacci chain in the third dimension, will exhibit IS in
this direction. In this case, the third component of all reciprocal vectors must be multiplied by
the inflation factor to generate the inflated quasilattice, the other two components remaining
unchanged. IS can be present in a plane, being the quasilattice in the third direction periodic, as
in decagonal, octagonal and dodecagonal quasicrystals. The two components of the diffraction
vectors parallel to the quasiperiodic plane must be multiplied by the inflation parameter in order
to obtain the inflated quasilattice. Finally, the diffraction pattern of an icosahedral quasicrystal
possesses IS in the whole reciprocal space. In this section we are interested in IMS with
IS in more than a single direction. As in the previous sections, the modulation vectors are
considered to be parallel to the vector basis of the set of main reflections. Moreover, we will
restrict ourselves to operations that are merely a dilation (we do not consider more general
operations like a rotation combined with inflation). Within these conditions, once the possible
modulation parameters in one dimension have been determined, the point symmetry of the IMS
forces the modulation parameter to take the same value in all symmetry-related directions. For
example, in the case of a cubic crystal, rotational symmetry forces the modulation parameter
to be the same in the three orthogonal directions. This is precisely the case in the Al–Mg
structure previously mentioned [7]. In tetragonal, hexagonal or trigonal systems the IS can be
present in one direction (parallel to the four-, six- or three-fold axis), in the plane perpendicular
to this direction or in both of them. In general, the inflation parameter can take different values
in the plane and in the axis direction. In the rest of the systems, as the point group does not
mix different directions, IS can be present in just one dimension, in two dimensions or even
in three dimensions, with the inflation parameters generally different for each direction.

3. IS in quasilattices with rotational point group of finite order, CN

In this section we analyse the IS of quasilattices having within their point group a rotational
symmetry of finite order CN . It is verified in a straightforward manner that the inflation
parameters and incommensurate parameters present in the directions parallel to each vector
basis are included among the possibilities of the one-dimensional case. More formal and
general analyses of the subject can be found in [9–11].
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As stressed above, in all the cases, the modulation parameter and the inflation factor
must be solutions of equations of different degrees. We will see in the following that in the
quasilattices with point groups having anN -fold axis, this condition is forced by the point
group symmetry.

In the diffraction pattern of quasiperiodic structures with point group CN , theN -fold axis
relates reflections in a star ofN (2N ) vectors that subtend angles of 2π/N (2π/(2N)) for
N even (odd). The number of rationally independent vectors in that star is the rank of the
quasilattice. Moreover, if we denote these vectors aski (i = 1, . . . , N and their opposites if
N is odd, and ordered from lower to higher angles with respect tok1) it is clear that the set of
vectors (ki ,ki+1 + ki−1,ki+2 + ki−2, . . .) are all parallel, and that the relations between their
modulus and the modulus ofki are

1, 2 cos(2π/N), 2 cos(4π/N), . . . (12)

If the number of rationally independent numbers among them isL, L − 1 is the number of
modulation vectors in a single line of the diffraction pattern parallel toki . ForN = 1, 2,
3, 4, 6 there is only one independent value and the diffraction pattern is periodic in all lines.
This corresponds to the crystalline case and there is no IS. IfN = 5, 8, 10, 12 there are
two rationally independent numbers, 1 and 2 cos(2π/N). Therefore, every reflection in one
line can be indexed by two mutually rationally independent vectors, being the modulation
parameter 2 cos(2π/N) (or an integer± that value). IfN = 7, 9, . . . there are three rationally
independent values. In any case, 2 cos(2π/N) satisfies an equation of degreeN with rational
coefficients, which can be factorized. Depending on the factorization, the degree of the
irreducible polynomial equations which satisfies 2 cos(2π/N) will be of a different value.
In order to calculate the polynomial in each case, the following trigonometric relations must
be used:

cosNθ = cos(N − 1)θ cosθ − sin(N − 1)θ sinθ

sinNθ = sin(N − 1)θ cosθ + cos(N − 1)θ sinθ. (13)

For successive values ofN the relations represent two recurrent sequences. We can expand
cosNθ as a polynom of degreeN in cosθ , and put sinNθ as sinθ times a polynom of degree
N −1 in cosθ . Equating the first polynomial to 1, the roots of that equation will be cos 2π/N ,
cos 2(2π/N), . . . , cosN(2π/N) = 1. As this latter trivial solution is always present for all
N , the equation can always be decomposed into two equations of degree 1 and (N − 1), and
the latter can generally be reduced further. In crystalline cases,N = 1, 2, 3, 4, 6, the equation
can be decomposed into first degree equations whose roots are all rational. ForN = 5, 8,
10, 12 the equation is decomposable into equations of degree 1 and 2, whose solutions have
the form ofq in (2), so that, in one line there is IS and both the modulation and the inflation
parameter, must be given in table 1. It can be checked thatN = 5, 10 cases correspond to the
third row (golden mean),N = 8 to the first row andN = 12 to the fifth row.

TheN = 7 case is quite different. Two modulation vectors are necessary to index all
reflections in a line of the diffraction pattern. The seventh degree equation obtained can be
decomposed into one equation of first degree and two identical equations of third degree,
8x3 + 4x2 − 4x − 1 = 0. The three solutions of this equation are cos 2π/7, cos 4π/7 and
cos 6π/7, but the last one is an integer linear combination of the other two solutions and
1. Therefore, the two incommensurate parameters in equation (12),q = 2 cos 2π/7 and
r = 2 cos 4π/7, are solutions of a third degree equation andq2, r2 andqr are integer linear
combinations of 1,q andr. These modulation parameters cannot be described in the form (2)
and are therefore not present in table 1, which is restricted to the case of a single modulation
parameter per direction in the reciprocal space. As it has been pointed out in section 2.2 there
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is a 3× 3 integer matrix belonging toGL(3, Z) which relates a reflection with its ‘inflated’
symmetry-related one. It can be proved that bothq and r are inflation parameters of the
quasilattice, and one of them is not an integer power of the other. The same happens with the
N = 9 quasilattice, whose irreducible equations are of third degree. The casesN = 7 and
N = 9 have been discussed by Barache [9] and Gazeau [11].

Therefore, the inflation parameters appearing in observed quasicrystals are all included
in table 1. They correspond to IS with low parameterM and hence are observable in the
diffraction diagram. On the other hand, it is significant that the rotational symmetries as
N = 7, 9, not experimentally observed, imply IS with two independent inflation parameters.

4. Conclusions

The modulation parameters and inflation factors associated with an IMS with one single
modulation have been calculated. They are infinite but physical/experimental reasons can
be used to classify them according to a criterion of practical observability. The modulation
parameter of the ‘cubic quasicrystal’ recently observed in the Al–Mg diagram is, in principle,
one of the most likely to be observed. Until now, it is an open question as to whether inflation
symmetry has physical meaning or if it is merely a mathematical curiosity due to the continuity
of the modulation parameter as a function of composition or temperature. Table 1 can help to
look for quasilattices with such a symmetry and elucidate this question. The way to generalize
to IMS with more than a modulation in one direction has also been pointed out. Finally,
rotational groups of any order, in which the inflation symmetry is forced by the point group,
have been analysed.
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